• Twitter Social Icon
  • LinkedIn Social Icon
  • Google+ Social Icon


Selected publications are below. A complete list can be found here

Efficient One-Pot Synthesis of a Hexamethylenetetramine - Doped Cu-BDC Metal-Organic Framework with Enhanced CO2 Adsorption

Aisha Asghar, Naseem Iqbal, Tayyaba Noor, Majid Ali, Timothy L. Easun

Nanomaterials, 2019, 9(8), 1063

DOI: 10.3390/nano9081063 

How can carbon dioxide uptake in a MOF be improved?

Herein we report a facile, efficient, low cost, and easily scalable route for an amine-functionalized MOF (metal organic framework) synthesis. Cu-BDC⊃ HMTA (HMTA= hexamethylenetetramine) has high nitrogen content and improved thermal stability when compared with the previously reported and well-studied parent Cu-BDC MOF (BDC= 1, 4-benzenedicarboxylate). Cu-BDC⊃ HMTA was obtained via the same synthetic method, but with the addition of HMTA in a single step synthesis. Thermogravimetric studies reveal that Cu-BDC⊃ HMTA is more thermally stable than Cu-BDC MOF. Cu-BDC⊃ HMTA exhibited a CO 2 uptake of 21.2 wt% at 273 K and 1 bar, which compares favorably to other nitrogen-containing MOF materials.

Characterisation of redox states of metal–organic frameworks by growth on modified thin-film electrodes

Tamoghna Mitra, Florian Moreau, Adam Nevin, Carlo U. Perotto, Alex Summerfield, E. Stephen Davies, Elizabeth A. Gibson, Timothy L. Easun, Martin Schröder

Chemical Science, 2018, 9, 31, 6572

DOI: 10.1039/C8SC00803E

How can you study electrochemistry in a MOF? 

The application of metal–organic framework (MOF) materials in electrochemical and electrochromic devices remains rare. One of the main reasons for this is the inability to readily access their detailed electrochemistry. The inherent insolubility of these materials does not allow interrogation by traditional solution-based electrochemical or spectroscopic methods. In this study, we report a straightforward alternative approach to the spectroelectrochemical study of MOFs. We have used two systems as exemplars in this study, MFM-186 and MFM-180. The method involves chemical modification of a working electrode to attach MOF materials without using corrosive reagents such as inorganic acids or bases which otherwise could limit their application in device development. MFM-186 demonstrates the formation of a stable radical species [MFM-186]˙+ on electrochemical oxidation, and this has been characterised by electrochemical, spectroelectrochemical and EPR spectroscopic techniques coupled to DFT analysis..

Investigating the geometrical preferences of a flexible benzimidazolone-based linker in the synthesis of coordination polymers

Corey L Jones, Elizabeth A Marsden, Adam C Nevin, Benson M Kariuki, Mohan M Bhadbhade, Adam D Martin, Timothy L Easun

Royal Society Open Science, 2017, 4, 12, 171064

DOI: 10.1098/rsos.171064

What directs the geometry of a linker of limited flexibility in the synthesis of coordination polymers?

A series of new group 2 coordination polymers, MgL ={MgL(H2O)(DMF)0.75}∞, CaL = {CaL(DMF)2}∞, SrL = {SrL(H2O)0.5}∞ and BaL = {BaL(H2O)0.5}∞, were synthesized using a flexible benzimidazolone diacetic acid linker (H2L) in which the two carboxylic acid binding sites are connected to a planar core via {–CH2–} spacers that can freely rotate in solution. In a ‘curiosity-led' diversion from group 2 metals, the first row transition metal salts Mn2+, Cu2+ and Zn2+ were also reacted with L to yield crystals of MnL = {MnL(DMF)(H2O)3.33}∞, Cu3L2 = {Cu3L2(DMF)2(CHO2)2}∞ and ZnL = {ZnL(DMF)}∞. Crystal structures were obtained for all seven materials. All structures form as two-dimensional sheets and contain six-coordinate centres, with the exception of ZnL, which displays tetrahedrally coordinated metal centres, and Cu3L2, which contains square planar coordinated metal centres and Cu paddle-wheels. In each structure, the linker adopts one of two distinct conformations, with the carboxylate groups either cis or trans with respect to the planar core. All materials were also characterized by powder X-ray diffraction and thermogravimetric analysis.

MOF the beaten track: unusual structures and uncommon applications of metal–organic frameworks

Alexander J. Tansell, Corey L. Jones and Timothy L. Easun

Chemistry Central Journal, 2017, 11:100, 1-16

DOI: 10.1186/s13065-017-0330-0

Ever wondered what else MOFs can do? 

Over the past few decades, metal–organic frameworks (MOFs) have proved themselves as strong contenders in the world of porous materials, standing alongside established classes of compounds such as zeolites and activated carbons. Following extensive investigation into the porosity of these materials and their gas uptake properties, the MOF community are now branching away from these heavily researched areas, and venturing into unexplored avenues. Ranging from novel synthetic routes to post-synthetic functionalisation of frameworks, host–guest properties to sensing abilities, this review takes a sidestep away from increasingly ‘traditional’ approaches in the field, and details some of the more curious qualities of this relatively young family of materials.

Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework

Florian Moreau, Ivan da Silva, Nada H. Al Smail, Timothy L. Easun, Mathew Savage, Harry G. W. Godfrey, Stewart F. Parker, Pascal Manuel, Sihai Yang, and Martin Schröder

Nature Communications, 2017, 8, 14085

DOI: 10.1038/ncomms14085

How do you get a lot of acetylene in a MOF?

Understanding the mechanism of gas-sorbent interactions is of fundamental importance for the design of improved gas storage materials. Here we report the binding domains of carbon dioxide and acetylene in a tetra-amide functionalized metal-organic framework, MFM-188, at crystallographic resolution. Although exhibiting moderate porosity, desolvated MFM-188a exhibits exceptionally high carbon dioxide and acetylene adsorption uptakes with the latter (232 cm3 g−1 at 295 K and 1 bar) being the highest value observed for porous solids under these conditions to the best of our knowledge. Neutron diffraction and inelastic neutron scattering studies enable the direct observation of the role of amide groups in substrate binding, representing an example of probing gas-amide binding interactions by such experiments. This study reveals that the combination of polyamide groups, open metal sites, appropriate pore geometry and cooperative binding between guest molecules is responsible for the high uptakes of acetylene and carbon dioxide in MFM-188a.


This site was designed with the
website builder. Create your website today.
Start Now